# Test 01

# Example 3

import numpy as np

class Matrix:
    """
    Definition: This class generates Rotation and Translation matrices,
    that can be used to multiply any matrix and obtain the translation or rotation.

    It uses `numpy` to generate the matrices:

        np.float32: creates the array with 16 float32 elements

        np.reshape: np.reshape rearrange the array into a 4X4 matrix

    Returns: It returns Rotation and translation matrices.

    Obs: **kwargs (keyword arguments) are used to facilitate the identification of the parameters, so initiate the
    object
    like: Matrix(x_angle='45', x_dist='100', z_angle='60', z_dist='100'), if an argument is not provided,
    the default 0 will be put to the argument.
    """
    def __init__(self, **kwargs):
        """
        Initializes the Object.
        """
        self._x_angle = kwargs['x_angle'] if 'x_angle' in kwargs else '0'
        self._x_dist = kwargs['x_dist'] if 'x_dist' in kwargs else '0'
        self._y_angle = kwargs['y_angle'] if 'y_angle' in kwargs else '0'
        self._y_dist = kwargs['y_dist'] if 'y_dist' in kwargs else '0'
        self._z_angle = kwargs['z_angle'] if 'z_angle' in kwargs else '0'
        self._z_dist = kwargs['z_dist'] if 'z_dist' in kwargs else '0'
        self._m_degrees = kwargs['m_degrees'] if 'm_degrees' in kwargs else 'True'

    def trans_x(self, a=0):
        """
        Definition: Translates the matrix a given amount `a` on the *X* axis by Defining a 4x4 identity
        matrix with `a` as the (1,4) element.

        :type a: float
        :param a: Distance translated on the X-axis

        Returns: The Translation Matrix on the *X* axis by a distance *a*
        """
        if a:
            self._x_dist = a
        trans_x = np.float32([1, 0, 0, self._x_dist,
                              0, 1, 0, 0,
                              0, 0, 1, 0,
                              0, 0, 0, 1])
        trans_x = np.reshape(trans_x, (4, 4))

        return trans_x

    def trans_y(self, b=0):
        """
        Definition: Translate the matrix a given amount `d` on the *Z* axis. by Defining a matrix T 4x4 identity
        matrix with *b* (3,4) element position.

        :type b: float
        :param b: Distance translated on the Z-axis

        Returns: The Translation Matrix on the *Z* axis by a distance *b*
        """
        if b:
            self._y_dist = b
        trans_y = np.float32([1, 0, 0, 0,
                                0, 1, 0, self._y_dist,
                                0, 0, 1, 0,
                                0, 0, 0, 1])
        trans_y = np.reshape(trans_y, (4, 4))

        return trans_y

    def trans_z(self, c=0):
        """
        Definition: Translate the matrix a given amount `d` on the *Z* axis. by Defining a matrix T 4x4 identity
        matrix with *c* (3,4) element position.

        :type c: float
        :param c: Distance translated on the Z-axis

        Returns: The Translation Matrix on the *Z* axis by a distance *c*
        """
        if c:
            self._z_dist = c
        trans_z = np.float32([1, 0, 0, 0,
                                0, 1, 0, 0,
                                0, 0, 1, self._z_dist,
                                0, 0, 0, 1])
        trans_z = np.reshape(trans_z, (4, 4))

        return trans_z

    def rot_x(self, gamma=0, degrees=True):
        """
        Definition: Receives an alpha angle and returns the rotation matrix for the given angle at the *X* axis.
        If the angle is given in radian degrees should be False.

        :type gamma: float
        :param gamma: Rotation Angle around the X axis
        :type degrees: bool
        :param degrees: Indicates if the provided angle is in degrees, if yes It will be converted to radians

        Returns: The Rotational Matrix at the X axis by an *gamma* angle
        """
        if gamma:
            self._x_angle = gamma
        if degrees:
            self._m_degrees = degrees

            self._x_angle = np.deg2rad(gamma)

        rot_x = np.float32([1, 0, 0, 0,
                            0, float("{:.3f}".format(np.cos(self._x_angle))), float("{:.3f}".format(-np.sin(self._x_angle))), 0,
                            0, float("{:.3f}".format(np.sin(self._x_angle))), float("{:.3f}".format(np.cos(self._x_angle))), 0,
                            0, 0, 0, 1])

        rot_x = np.reshape(rot_x, (4, 4))

        return rot_x

    def rot_y(self, beta=0, degrees=True):
        """
        Definition: Receives an theta angle and returns the rotation matrix for the given angle at the *Z* axis.
        If the angle is given in radian degrees should be False.

        :type beta: float
        :param beta: Rotation Angle around the Z axis
        :type degrees: bool
        :param degrees: Indicates if the provided angle is in degrees, if yes It will be converted to radians

        Returns: The Rotational Matrix at the Z axis by an *beta* angle
        """
        if beta:
            self._y_angle = beta
        if degrees:
            self._m_degrees = degrees

            self._y_angle = np.deg2rad(beta)

        rot_y = np.float32([float("{:.3f}".format(np.cos(self._y_angle))), 0, 0, float("{:.3f}".format(np.sin(self._y_angle))),
                            0, 0, 0, 0,
                            float("{:.3f}".format(-np.sin(self._y_angle))), 0, 1, float("{:.3f}".format(np.cos(self._y_angle))),
                            0, 0, 0, 1])

        rot_y = np.reshape(rot_y, (4, 4))

        return rot_y

    def rot_z(self, alpha=0, degrees=True):
        """
        Definition: Receives an theta angle and returns the rotation matrix for the given angle at the *Z* axis.
        If the angle is given in radian degrees should be False.

        :type alpha: float
        :param alpha: Rotation Angle around the Z axis
        :type degrees: bool
        :param degrees: Indicates if the provided angle is in degrees, if yes It will be converted to radians

        Returns: The Rotational Matrix at the Z axis by an *alpha* angle
        """
        if alpha:
            self._z_angle = alpha
        if degrees:
            self._m_degrees = degrees

            self._z_angle = np.deg2rad(alpha)

        rot_z = np.float32([float("{:.3f}".format(np.cos(self._z_angle))), float("{:.3f}".format(-np.sin(self._z_angle))), 0, 0,
                            float("{:.3f}".format(np.sin(self._z_angle))), float("{:.3f}".format(np.cos(self._z_angle))), 0, 0,
                            0, 0, 1, 0,
                            0, 0, 0, 1])

        rot_z = np.reshape(rot_z, (4, 4))

        return rot_z

def main():
    """
    Example 3
    """

    print('Example 3:')

    a1 = Matrix()       # Rotation in x by 90
    a2 = Matrix()       # Translation in X by 0.75
    a3 = Matrix()       # Rotation in Z by 30
    a4 = Matrix()       # Rotation in Z by -30
    a5 = Matrix()       # Translation in X by 0.5
    a6 = Matrix()       # Both transforms
    a7 = Matrix()       # g



    print()
    print('Rotation in X by 90:')
    print(a1.rot_x(45))
    print()
    print('Translation in X by 0.75:')
    print(a2.trans_x(0.75))
    print()
    print('Rotation in Z by 30')
    print(a3.rot_z(30))
    # print()
    # print('Rotation in X by 90 x Translation in X by 0.75:')
    # print(np.matmul(a1.rot_x(90), a2.trans_x(0.75)))
    print()
    print('First Individual Transform:')
    print('Rotation in X by 90 x Translation in X by 0.75 x Rotation in Z by 30:')
    print(np.matmul((np.matmul(a1.rot_x(90), a2.trans_x(0.75))), a3.rot_z(30)))

    print()
    print('Rotation in Z by 30:')
    print(a4.rot_z(-30))
    print()
    print('Translation in X by 0.5:')
    print(a5.trans_x(0.55))
    print()
    print('Second Individual Transform:')
    print('Rotation in Z by 30 x Translation in X by 0.5')
    print(np.matmul(a4.rot_z(-30), a5.trans_x(0.55)))

    print()
    print('Product of both transforms:')
    a6 = np.matmul(np.matmul((np.matmul(a1.rot_x(90), a2.trans_x(0.75))), a3.rot_z(30)), np.matmul(a4.rot_z(-30), a5.trans_x(0.55)))
    print(a6)

    print()
    print('G:')
    a7 = np.float32([0.1, 0.1, 0, 1])
    a7 = np.reshape(a7, (4, 1))
    print(a7)

    print()
    print('Final Countdown:')
    print(np.matmul(a6, a7))

    # print('Rotation in X by 90 and rotation in Z by 30')
    # print(np.matmul(a0.rot_x(90), a0.rot_z(30)))

    return


if __name__ == '__main__':
    main()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Output:

Example 3:

Rotation in X by 90:
[[ 1.     0.     0.     0.   ]
 [ 0.     0.707 -0.707  0.   ]
 [ 0.     0.707  0.707  0.   ]
 [ 0.     0.     0.     1.   ]]

Translation in X by 0.75:
[[1.   0.   0.   0.75]
 [0.   1.   0.   0.  ]
 [0.   0.   1.   0.  ]
 [0.   0.   0.   1.  ]]

Rotation in Z by 30
[[ 0.866 -0.5    0.     0.   ]
 [ 0.5    0.866  0.     0.   ]
 [ 0.     0.     1.     0.   ]
 [ 0.     0.     0.     1.   ]]

First Individual Transform:

Rotation in X by 90 x Translation in X by 0.75 x Rotation in Z by 30:
[[ 0.866 -0.5    0.     0.75 ]
 [ 0.     0.    -1.     0.   ]
 [ 0.5    0.866  0.     0.   ]
 [ 0.     0.     0.     1.   ]]

Rotation in Z by 30:
[[ 0.866  0.5    0.     0.   ]
 [-0.5    0.866  0.     0.   ]
 [ 0.     0.     1.     0.   ]
 [ 0.     0.     0.     1.   ]]

Translation in X by 0.5:
[[1.   0.   0.   0.55]
 [0.   1.   0.   0.  ]
 [0.   0.   1.   0.  ]
 [0.   0.   0.   1.  ]]

Second Individual Transform:

Rotation in Z by 30 x Translation in X by 0.5
[[ 0.866   0.5     0.      0.4763]
 [-0.5     0.866   0.     -0.275 ]
 [ 0.      0.      1.      0.    ]
 [ 0.      0.      0.      1.    ]]

Product of both transforms:
[[ 0.999956   0.         0.         1.2999759]
 [ 0.         0.        -1.         0.       ]
 [ 0.         0.999956   0.         0.       ]
 [ 0.         0.         0.         1.       ]]

G:
[[0.1]
 [0.1]
 [0. ]
 [1. ]]

Final Answer:
[[1.3999715 ]
 [0.        ]
 [0.09999561]
 [1.        ]]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66